MATH 504 HOMEWORK 5

Due Monday, April 12.

Problem 1. Let M be a countable transitive model of ZFC, λ be a regular cardinal and let $Add(\omega, \lambda)$ be the poset of all partial functions from $\lambda \times \omega$ to $\{0,1\}$ with finite domain. Let G be a generic filter over M. Define $f^* : \lambda \times \omega \to \{0,1\}$ to be $f^* = \bigcup G$ and for all $\alpha < \lambda$, let $f_\alpha : \omega \to \{0,1\}$ be $f_\alpha(n) = f^*(\alpha, n)$. Prove that

- (1) f^* is a total function with domain $\lambda \times \omega$.
- (2) For each $\alpha < \beta < \lambda$, $f_{\alpha} \neq f_{\beta}$.
- (3) For each $\alpha < \lambda$, $f_{\alpha} \notin M$.

Problem 2. Let M be a transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that $p \in \mathbb{P}$ is such that $p \Vdash \dot{f} : \lambda \to \tau$ is a function.

- (1) Show that for every $\alpha < \lambda$, the set $\{q \mid \exists \gamma < \tau(q \Vdash f(\alpha) = \gamma)\}$ is dense below p.
- (2) Let $B = \{\gamma < \tau \mid (\exists q \leq p)(\exists \alpha < \lambda)(q \Vdash \dot{f}(\alpha) = \gamma)\}$. Show that if $\sup(B) < \tau$, then $p \Vdash \operatorname{ran}(\dot{f})$ is bounded in τ .

Problem 3. Suppose \mathbb{P} and \mathbb{Q} are two posets and $i : \mathbb{P} \to \mathbb{P}$ is such that:

- (1) $i(1_{\mathbb{P}}) = 1_{\mathbb{O}};$
- (2) If $p' \le p$, then $i(p') \le i(p)$;
- (3) For all $p_1, p_2 \in \mathbb{P}$, $p_1 \perp p_2$ iff $i(p_1) \perp i(p_2)$;
- (4) If A is a maximal antichain of \mathbb{P} , then $i^{"}A := \{i(p) \mid p \in A\}$ is a maximal antichain in \mathbb{Q} .

Suppose also that H is \mathbb{Q} -generic. Show that $G := \{p \in \mathbb{P} \mid i(p) \in H\}$ is \mathbb{P} -generic and that $V[G] \subset V[H]$, where V is the ground model.

Remark: an embedding as above is called a complete embedding,

Problem 4. Suppose that for all n, $2^{\aleph_n} = \aleph_{\omega+1}$. Show that $2^{\aleph_\omega} = \aleph_{\omega+1}$. Hint: For each $A \subset \aleph_\omega$, define $A_n := A \cap \aleph_n$. Consider the map $A \mapsto \langle A_n | n < \omega \rangle$.

Problem 5. Suppose that \mathbb{P} is a poset, $A \subset \mathbb{P}$ is a maximal antichain, $\phi(x)$ is a formula, and $\langle \tau_p \mid p \in A \rangle$ are \mathbb{P} names, such that for all $p \in A$, $p \Vdash \phi(\tau_p)$. Show that there is a \mathbb{P} name τ , such that $1_{\mathbb{P}} \Vdash \phi(\tau)$.